
A Purely Functional
Computer Algebra System

Embedded in Haskell

Hiromi ISHII
University of Tsukuba, Japan

19th September 2018
CASC 2018 @ Lille

Motivation

We apply methods in Functional
Programming such as:

Dependent Types, Property Based Testing,  
Purity and Rewriting Rules, ...

... to implement a computer algebra system
with:

Safety, Correctness, and Composability.

Our System
Embedded Domain Specific Language (EDSL) in
Haskell.

Haskell: A Statically-typed lazy functional
programming language

We take advantages of powerful extensions of
Glasgow Haskell Compiler (GHC) to design a
computer algebra system

Spoiler: Some methods are applicable also in other
languages or paradigms!

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Type System for Safety
and Composability

Type-systems for
algebra

Type System: system to decide how values must be typed.

Types: Tags, or Invariants on values to enforce safety; 
 "Typed terms never get stuck"

There are some existing works; e.g:

Less-typed: DoCon[1]: Haskell,Java Algebra System[2].

Dependently-typed: DoCon-A[3], Coquand et al.[4]

Our system sits between of the above two

We utilise a weak form of "Dependent Types"

Dependent Types?

Types depending on expressions

FULL Dep Types can simulate the higher-
order logic, used in proof assistants

We use WEAK dependent types depending
on naturals and list of strings to...

distinguish the # of vars and

label variables with unique name

"Safety" we
want here!

Example:
Polynomial arity

Suppose we have two polyn rings: R[X1, ... Xn]
and R[Y1, ..., Ym], possibly n ≠ m.

Less-typed approach: both are
represented by the same type Poly r.

Compiler should refuse such a
confusion of different rings, since it's
unclear how vars must be mapped!

Let's make Poly dependent on n or m!

Arity parametrised
polynomials

Old Poly has "kind" (type of type):  
 Poly ! Type ! Type

Our type: Poly r n  
 Poly ! Type ! ℕ ! Type

Now depends on Nat, not only Types!

Such types are NOT directly available in Java
or Plain Haskell.

We can still simulate type nats by phantom
types, but it adds burden w/o native support.

Throwing errors at
Compile-time

f1 ! Poly ℕ 1 
f1 = 3 * #x ^ 2 + 2 * #x + 1 
f2 ! Poly ℚ 1 
f2 = 3 * #x ^ 2 + 2 * #x + 1 

λ> f1 + f2
Couldn't match type ‘ℚ’ with ‘ℕ’ 

g1 ! Poly ℚ 2 
g1 = let [x,y] = vars in x * 2 + y 
g2 ! Poly ℚ 3 
g2 = let [x,y,z] = vars in z * y + x 

λ> g1 + g2
Couldn't match type ‘2’ with ‘3’ Different Arity!

Different Coeff.
(so what?)Type-level

naturals!

Generic I/F for
Polyns

We also provide a generic
interface with type-classes.

Making library more
composable

polyns optimised for
univariate case or
homogenisation, ...

We use type-level
functions to repr. their
arities, monomial
orderings and coeffs.

class
 (Module (Coeff poly) poly,
 Ring poly, Ring (Coeff poly),
 IsMonomialOrder (MOrder poly))
! IsOrdPoly poly where
 type Arity poly ! ℕ
 type MOrder poly ! Type
 type Coeff poly ! Type
 liftMap
 ! (Module (Coeff poly) alg,
 Ring alg)
 ! (ℕ<Arity poly ! alg) ! poly
 ! alg
 !!

Type-level
functions!

➡ Examples

➡ More

• We cannot add directly polyns with exactly the
same setting but with different types, by design.

• (f ! Unipol ℚ)+(g ! OrdPol ℚ Lex 1) → Error!

• We provide various casters for explicit casting!

Casting functions

convPoly ! (Coeff r ~ Coeff r', MOrder r ~ MOrder r',
 Arity r ~ Arity r')
 ! r ! r'

injVars ! (Arity r ≤ Arity r', Coeff r ~ Coeff r')
 ! r ! r'

Exactly the same
settings

Cast into
"more" variables

Labeled Polyns
We want more flexible control of reordering of vars!

LabPoly converts any polyn type into "labelled" one, each
variables with the unique name (LabPoly' is a synonym).

canonicalMap does exactly what we expect!

data LabPoly poly (vs ! [Symbol]) 
type LabPoly' r ord vs = LabPoly (OrdPoly r ord (Len vs)) vs 

f ! LabPoly' Rational Grevlex '["x", "y"] 
f = 5 * #x ^ 2 * #y ^ 3 - #y + 1 

f' ! LabPoly' Rational Lex '["a", "y", "b", "x", "z"]
f' = canonicalMap f  

λ> canonicalMap f ! LabPoly' Rational Grevlex '["y"] 
error: Couldn't match type ‘'False’ with ‘'True’

Type-level
strings!

Specify variable intuitively

Why not full
Dependent Types?

Encoding everything in Dependent Types means
proving everything (including termination)

We sometimes want to implement algorithms
whose termination is remain unknown!

We require proofs only for arity arithmetic

We developed lemma collection and
compiler plugin for Presburger arith to
minimize burden.

Floating Point Numbers doesn't form a ring; it
can't be treated directly in such settings!

➡ Example

Type-system:
Summary

We use weak dependent-types for type-safety:

distinguish polynomials with different # of vars

Type-naturals are simulatable in other langs.

We save "manual proofs" by compiler plugin.

Automatically induces maps between polyns.

Rewriting Rules to reduce overheads, thanks to
the Purity (difficult in impure langs).

Omitted: safer quotient rings, without full dep
types but with higher polymorphism! ➡ More

➡ More

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Property-based Testing:
Lightweight correctness

Property-based
Testing (PBT) [6]

Tests program against formal spec, feeding some
of randomly generated or enumerated inputs.

More robust than unit tests w/ fixed inputs.

Multiple strategies for generating inputs

Not limited to Haskell; e.g. Hypothesis[7] in Python

No proof required; we can even verify algorithms
whose validity is unknown.

Example

prop_division ! ℚ ! Property
prop_division q =
 q ! 0 !! (recip q * q ! 1 && q * recip q ! 1)
 && q * 1 ! q && 1 * q = q

prop_passesSTest n =
 forAll (idealOfArity n) $ \ i !
 let gs = calcGroebnerBasis i
 in all (isZero . (`modPoly` gs))
 [sPoly f g | f ! gs, g ! gs, f ! g]

Every non-zero
rational has inverse

1 is mult unit

S-poly of any two
distinct elements
reduces to zero

For all n-
variate ideal

Drawbacks
Not as rigorous as formal theorem proving as in DoCon-A;
trade-off for flexibility.

Testing may take much time

Since G.b. comp has doubly-exponential worst time
complexity, tests may explode.

We can reduce # of inputs, at the sacrifice of the
confidence.

By its nature, not so good at treating existential props.

Invoke external decision proc in such cases if available

➡ More

PBT: Summary
Checks if formal specs are satisfied by
testing against generated inputs

More rigorous than fixed-input unit
tests, but less than theorem proving

Applicable to experimental algorithms

Available in many other languages

Worst complexity and existential properties
are bottlenecks for PBT.

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Current Status &
Examples

Implemented
Algorithms

Groebner Basis Computation

Buchberger (naive, syzygy, sugar)

Basis conversion (FGLM, deg-by-deg, Hilbert)

Faugère's F5 and F4

Quotients by Zero-dimensional ideals

Cantor-Zassenhaus factorisation

Fields: ℚ, 𝔽p, Galois Fields, ℚ̅ (naïve)

F5: Pseudocode in
CLO[8]

586 Chapter 10 Additional Gröbner Basis Algorithms

A Signature-Based Algorithm

We will present a signature-based algorithm following an outline very much like
that of Buchberger’s algorithm to make connections with other approaches we have
studied more apparent. Faugère’s presentation of the original F5 algorithm looked
quite different.

Input: F = (f1, . . . , fs), fi ∈ R

Output: φ(G), a Gröbner basis for I = ⟨ f1, . . . , fs⟩

G := ∅
P := {e1, . . . , es}
S := {− fj ei + fi ej | 1 ≤ i < j ≤ s}
WHILE P ̸= ∅ DO

g := the element of smallest signature in P
P := P \ {g}
IF Criterion(g,G ∪ S) = false THEN

h := a regular s-reduction of g by G
IF φ(h) = 0 THEN

S := S ∪ {h}
ELSE

h :=
1

LC(φ(h))
h

P := P ∪ {S(k, h) | k ∈ G and S(k, h) is regular}
G := G ∪ {h}

RETURN φ(G)

In this algorithm,G represents the current intermediate signature Gröbner basis,
and S represents a set of known syzygies on the input polynomials f1, . . . , fs. The
initial value of S is the set of Koszul syzygies—syzygies of the form encountered in
Example 1—namely, the vectors

kij = − fjei + fiej,

for all pairs of indices 1 ≤ i < j ≤ s. Note that the choice of signs here and the
definition of the >POT order makes s(kij) = LM(fi)ej (recall that we assume all
polynomials occurring are monic). The initial value ofG is ∅ and the set of standard
basis vectors in Rs [with φ(ei) = fi] are placed in a set P that will also contain
S-vectors of pairs later in the computation. Each of the ei will be considered as the
algorithm proceeds and each of them will either s-reduce to zero immediately, or
else an element will be inserted in G that will imply ei is s-reduced to zero by G.
The condition on the ei from Proposition 12 will hold because of this.

Example: F5 impl
f5 ! (Field (Coeff p), IsOrdPoly pol)! Vector p ! [(Vector p, p)]
f5 i = runST $ do
 let n = length i
 gs ! newSTRef []
 ps ! newSTRef $ fromList [basis n k | k ! [0!n-1]]
 syzs ! newSTRef [sVec im in | m ! [0!n-1], n ! [0!j-1]]
 whileJust_ (H.viewMin !! readSTRef ps) $ \ (Entry sig g, ps') ! do
 ps .= ps'
 (gs', ss') ! (,) !! readSTRef gs !! readSTRef syzs
 unless (standardCriterion sig ss') $ do
 let (h, ph) = reduceSignature i g gs'
 h' = map (* injCoeff (recip $ leadCoeff ph)) h
 if isZero ph then syzs .%= (mkEntry h :)
 else do
 let adds = fromList $ mapMaybe (regSVec (ph, h')) gs'
 ps .%= H.union adds
 gs .%= ((monoize ph, mkEntry h') :)
 map (\ (p, Entry _ a) ! (a, p)) !! readSTRef gs

Other Impls
Generic Matrix I/F for F4

Pluggable Gaussian Elimination;
users can use custom matrices.

Using laziness and parallelism
combinators in Hilbert-driven alg.

Power series as infinite list,
computing convolutions parallelly

➡ More

➡ More

Benchmarks (ms)

Our F4 impl took much execution time and not included

Slower than state-of-the-art impl in most cases

I1 (lex) I1 (grevlex) I2 (lex) I2 (grevlex) I3 (grevlex)

Our lib

Buch 1.861 13.59 14.28 4.204 800.3

Hilb 104.4 160.2 25.64 16.76 7785

F5 0.5623 3.869 2.992 1.389 7.173

Singular
gb 2.5550 1.0554 2.5037 0.8904 0.9090

sba 0.2717 0.3768 0.2403 0.2592 0.4221

I1 := ⟨35y4 − 30xy2 − 210y2z + 3x2 + 30xz − 105z2 + 140yt − 21u,
5xy3 − 140y3z − 3x2y + 45xyz − 420yz2 + 210y2t − 25xt + 70zt + 126yu⟩

I2 := ⟨w + x + y + z, wx + xy + yz + zw, wxy + xyz + yzw + zwx, wxyz − 1⟩
I3 := ⟨x31 − x6 − x − y, x8 − z, x10 − t⟩

Faster than
Singular's gb!

Fastest

2nd

Intel Xeon E5-2690 at 2.90 GHz, RAM 128GB, Linux 3.16.0-4 (SMP), using 10 cores

More on F5
Signature

Order I1 (lex) I1 (grevlex) I2 (lex) I2 (grevlex) I3 (grevlex)

Our
F5

POT 0.4138 4.262 2.837 1.286 17.62

TOP 0.5977 4.288 5.728 3.461 6.781

t-POT 0.5623 3.869 2.992 1.389 7.173

t-TOP 0.4860 3.879 3.100 1.360 7.319

d-POT 2.986 3.764 3.297 1.342 7.040

d-TOP 3.631 4.138 5.178 3.521 6.709

Singu
lar

gb 2.5550 1.0554 2.5037 0.8904 0.9090

sba 0.2717 0.3768 0.2403 0.2592 0.4221

Fastest

2nd

3rd

Some heuristics can help? (TOP for high degree.... etc.)

➡ Different Env

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Table of Contents

Type System for Safety and
Composability

Property-based Testing: Lightweight
correctness

Current Status & Examples

Future Works & Conclusions

Future Works &
Conclusions

Future Works
More performance tuning needed for F4

Hensel lifting or Chinese Remaindering for
Matrices...

Parallelism and GPU

Haskell's Purity empowers parallelism

There are several parallel matrices [9, 10]

More Aggressive Heuristics and Rewriting?

Mixture of theorem-proving, automated proving and
property-based testing

Conclusions
With weak dependent-types and higher
polymorphism, we can achieve more type-safety,
retaining flexibility as an experimental env.

Type-class and type naturals enables us to make
generic and composable interface

Rewriting Rules can reduce the overhead

Property-based testing enables us to verify the
impl. in a lightweight manner.

Some methods are applicable in other paradigms!

References

1. Mechveliani, S. D.: Computer algebra with Haskell: applying functional–
categorial–“lazy” programming. In: Proceedings of International
Workshop CAAP, pp. 203–211. (2001)

2. Kredel, H., Jolly, R.: Generic, type-safe and object oriented computer algebra
software. In: Computer Algebra in Scientific Computing, pp. 162–
177. Springer, Berlin, Heidelberg (2010)

3. Mechveliani, S. D.: DoCon-A a Provable Algebraic Domain Constructor.
http: //www.botik.ru/pub/local/Mechveliani/docon-A/2.02/
manual.pdf (2018). Accessed 06/05/2018

4. Coquand, T., Persson, H.: Gröbner bases in type theory. In: Types for
Proofs and Programs, pp. 33–46. Springer, Berlin, Heidelberg (1999)

References

5. Kiselyov, O., Shan, C.: Functional Pearl: implicit configurations -- or, type
class reflect the values of types. In: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell, pp.33-44. ACM (2004).

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing
of Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming. ICFP ’00,
pp. 268–279. ACM (2000).

7. Hypothesis: Most testing is ineffective - Hypothesis. https://
hypothesis.works (2018).

8. Cox, D.A., Little, J., O'Shea, D.: Ideals, Varieties and Algorithms.
Springer (2015).

https://hypothesis.works
https://hypothesis.works

References

9. Keller, G., Chakravarty, M. M., Leshchinskiy, R., Peyton Jones, S.,
Lippmeier, B.: Regular, shape-polymorphic, parallel arrays in Haskell. In:
Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming. ICFP ’10, pp. 261–272. ACM,
Baltimore, Maryland, USA (2010)

10. Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.:
Accelerating Haskell array codes with multicore GPUs. In Proceedings of the
sixth workshop on Declarative aspects of multicore programming
(DAMP '11). ACM (2011).

Thank You!

Any Questions?
With weak dependent-types and higher
polymorphism, we can achieve more type-safety,
retaining flexibility as an experimental env.

Type-class and type naturals enables us to make
generic and composable interface

Rewriting Rules can reduce the overhead

Property-based testing enables us to verify the
impl. in a lightweight manner.

Some methods are applicable in other paradigms!

Appendix

Algebraic Hierarchy
as Type-classes

Expressing algebraic
hierarchy intuitively

Not so new idea

NO proofs of
algebraic laws
required

Property-based
testing can fix this

class Additive a where
 (+) ! a ! a ! a

class Additive a
 ! Monoidal a where
 zero ! a

!!

class (Multiplicative a,
 Monoidal a)
 ! Ring a where
 fromInteger ! ℕ ! a

Examples of
Polynomial Rings

data Unipol r = Unipol [r]
instance CoeffRing r ! IsOrdPoly (Unipol r) where
 type Arity (Unipol r) = 1
 type Coeff (Unipol r) = r
 type MOrder (Unipol r) = Lex
 !!

data OrdPoly r ord n = Unipol (Map (OMonom ord n) r)
instance (IsMonomialOrder ord, CoeffRing r)
 ! IsOrdPoly (OrdPoly r ord n) where
 type Arity (Unipol r ord n) = n
 type Coeff (Unipol r ord n) = r
 type MOrder (Unipol r ord n) = ord
 !!

Univariate poly, 
impl. as a coeff list

Multivar poly, 
as a fin map from

monomials

Example: Easy arity
proofs

Example: mapping vars to the end!

We want: injVarsEnd ! (Arity r ≤ Arity r') ! r ! r'  
with X1, …, Xn ↦ Xm - n + 1, …, Xm.

We use:  
injVarsOffset!(k + Arity r ≤ Arity r') ! Sing k ! r ! r'  
with X1, …, Xn ↦ Xk + 1, …, Xk + n.

Solution? injVarsOffset (sing ! Sing (m - n))

GHC cannot see m - n + n ≤ m !

Singleton: type-level
argument

Convincing GHC
with Proofs

We developed the type-natural package with
many proofs on natural numbers

Answer:  
withRefl (minusPlus m n Witness) $  
 injVarsOffset (sing ! Sing (m - n))

We also devised a type-checker plugin to
automatically proof props within Presburger
arithmetic.

With helps from these, much less effort is
needed to convince GHC.

:: (m - n) + n = m

Purity and Rewriting
Rules: Reducing Overhead

Casting functions are implemented genericaly;
imposes extra overhead if the mapping is trivial

We can use Rewriting Rules to reduce overhead!

LHS will be replace by RHS if the type matches.

Since every expr in Haskell is pure (w/o side-
effect), we can concentrate on algebraic validity!

{-# RULES
 "convPoly/id" convPoly = id
 "injVars/monotone"
 injVars (Poly dic) = Poly (mapKeysMonotone padZero dic) #-}

convPoly b/w same types
must be identity

More efficient var shifting
within specific impl.

Quotient Ring Example
(omitted in the paper)
We can still achieve type-safe quotient rings!

Enabled by "Implicit Configurations" [5]
tech, which utilises Rank-N Polymorphism.

data Quot r i
modIdeal ! Reifies i (Ideal r) ! r ! Quot r i
withQuot ! Ideal poly
 ! (∀i. Reifies i (Ideal poly) ! Quot poly i)
 ! poly

instance (Reifies i (Ideal r), IsOrdPoly r) ! Ring (Quot r i)

Quotient of ring r by an ideal i

This ∀ prevents ideal from leaking

Reading: "i carries info of an ideal / R"

We cannot
add Quot's

with
different

i's.

Existential
Properties

Naive spec for gb(I) ⊆ I:  
 ∀ f ⃗ ∀g ∈ gb(⟨f1, ... fn⟩) ∃(c1, ..., cn) s.t. f = c1 f1 + ... + cn fn

There is no guarantee that the tester can
find c's by its generation strategy,
resulting in false-negatives!

Solution: resort to existing, external
reliable decision procedure

Our package calls SINGULAR in the spec.

Matrix I/FM for F4

F4 algorithm reduces g.b. to Gauss elimination

We provide im/mutable matrices classes to make algorithm
composable

We also abstract selection strategies as weighting function

class MMatrix mat a where
 scaleRow ! Mult a ! Int ! a ! mat s a ! ST s ()
 !!

class MMatrix (Mutable mat) a ! Matrix mat a where
 type Mutable mat ! Type ! Type
 freeze ! Mutable mat s a ! ST s (mat a)
 !!
 gaussReduction ! Field a ! mat a ! mat a

type Strategy f w = f ! f ! w
f4 ! (Ord w, !!, Matrix mat (Coeff p))
 ! proxy mat ! Strategy p w ! Ideal p ! [p]

Hilbert Driven
data HPS n = HPS { taylor ! [ℕ], numerator ! Unipol ℕ }

instance Eq (HPS a) where
 (!) = (!) `on` numerator
instance Additive (HPS n) where
 HPS cs f + HPS ds g = HPS (zipWith (+) cs ds) (f + g)
instance LeftModule (Unipol Integer) (HPS n) where
 f .* HPS cs g = HPS (conv (taylor f ! repeat 0) cs) (f * g)

conv ! [ℕ] ! [ℕ] ! [ℕ]
conv (x : xs) (y : ys) =
 let parSum a b c = a `par` b `par` c `seq` (a + b + c) in
 x * y :
 zipWith3 parSum (map (x*) ys) (map (y*) xs) (0 : conv xs ys)

Power series as inf list, and numerator for equality

We use parallelism combinators in convolution!

Benchmark in Other
Env

Signature
Order I1 (lex) I1 (grevlex) I2 (lex) I2 (grevlex) I3 (grevlex)

Our
F5

POT 0.3543 2.391 1.889 0.9322 11.14

TOP 0.3315 2.641 4.342 2.774 5.328

t-POT 0.7545 3.175 2.091 1.071 5.611

t-TOP 0.6171 3.458 2.148 1.026 8.779

d-POT 3.523 2.304 1.694 0.9248 4.740

d-TOP 3.164 2.822 4.204 2.697 5.519

Singu
lar

gb 3.1955 1.3231 2.9396 1.0662 1.2709

sba 0.4670 0.4502 0.3742 0.3758 0.4801

Fastest

2nd

3rd

NB: Benchmarked on my Laptop (2.8 GHz Intel
Core i7, 16GB RAM; different than other results)

