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Motivation

We apply methods in Functional 
Programming such as: 

Dependent Types, Property Based Testing,  
Purity and Rewriting Rules, ... 

... to implement a computer algebra system 
with: 

Safety, Correctness, and Composability.



Our System
Embedded Domain Specific Language (EDSL) in 
Haskell. 

Haskell: A Statically-typed lazy functional 
programming language 

We take advantages of powerful extensions of 
Glasgow Haskell Compiler (GHC) to design a 
computer algebra system 

Spoiler: Some methods are applicable also in other 
languages or paradigms!
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Type System for Safety 
and Composability



Type-systems for 
algebra

Type System: system to decide how values must be typed. 

Types: Tags, or Invariants on values to enforce safety; 
   "Typed terms never get stuck" 

There are some existing works; e.g: 

Less-typed: DoCon[1]: Haskell,Java Algebra System[2]. 

Dependently-typed: DoCon-A[3], Coquand et al.[4] 

Our system sits between of the above two 

We utilise a weak form of "Dependent Types"



Dependent Types?

Types depending on expressions 

FULL Dep Types can simulate the higher-
order logic, used in proof assistants 

We use WEAK dependent types depending 
on naturals and list of strings to... 

distinguish the # of vars and 

label variables with unique name

"Safety" we 
want here!



Example: 
Polynomial arity

Suppose we have two polyn rings: R[X1, ... Xn] 
and R[Y1, ..., Ym], possibly n ≠ m. 

Less-typed approach: both are 
represented by the same type Poly r. 

Compiler should refuse such a 
confusion of different rings, since it's 
unclear how vars must be mapped! 

Let's make Poly dependent on n or m!



Arity parametrised 
polynomials

Old Poly has "kind" (type of type):  
  Poly ! Type       ! Type 

Our type: Poly r n  
  Poly ! Type ! ℕ ! Type 

Now depends on Nat, not only Types! 

Such types are NOT directly available in Java 
or Plain Haskell. 

We can still simulate type nats by phantom 
types, but it adds burden w/o native support.



Throwing errors at 
Compile-time

f1 ! Poly ℕ 1 
f1 = 3 * #x ^ 2 + 2 * #x + 1 
f2 ! Poly ℚ 1 
f2 = 3 * #x ^ 2 + 2 * #x + 1 

λ> f1 + f2 
Couldn't match type ‘ℚ’ with ‘ℕ’ 

g1 ! Poly ℚ 2 
g1 = let [x,y] = vars in x * 2 + y 
g2 ! Poly ℚ 3 
g2 = let [x,y,z] = vars in z * y + x 

λ> g1 + g2 
Couldn't match type ‘2’ with ‘3’ Different Arity!

Different Coeff. 
(so what?)Type-level 

naturals!



Generic I/F for 
Polyns

We also provide a generic 
interface with type-classes. 

Making library more 
composable 

polyns optimised for 
univariate case or 
homogenisation, ... 

We use type-level 
functions to repr. their 
arities, monomial 
orderings and coeffs.

class 
 (Module (Coeff poly) poly,  
  Ring poly, Ring (Coeff poly), 
  IsMonomialOrder (MOrder poly)) 
! IsOrdPoly poly where 
  type Arity  poly ! ℕ 
  type MOrder poly ! Type 
  type Coeff  poly ! Type 
  liftMap 
    ! (Module (Coeff poly) alg,  
        Ring alg) 
    ! (ℕ<Arity poly ! alg) ! poly 
    ! alg 
  !!

Type-level 
functions!

➡ Examples

➡ More



• We cannot add directly polyns with exactly the 
same setting but with different types, by design. 

• (f ! Unipol ℚ)+(g ! OrdPol ℚ Lex 1) → Error! 

• We provide various casters for explicit casting!

Casting functions

convPoly ! (Coeff r ~ Coeff r', MOrder r ~ MOrder r', 
             Arity r ~ Arity r') 
         ! r ! r' 

injVars  ! (Arity r ≤ Arity r', Coeff r ~ Coeff r') 
         ! r ! r'

Exactly the same 
settings

Cast into 
"more" variables



Labeled Polyns
We want more flexible control of reordering of vars! 

LabPoly converts any polyn type into "labelled" one, each 
variables with the unique name (LabPoly' is a synonym). 

canonicalMap does exactly what we expect!

data LabPoly poly (vs ! [Symbol]) 
type LabPoly' r ord vs = LabPoly (OrdPoly r ord (Len vs)) vs 

f ! LabPoly' Rational Grevlex '["x", "y"] 
f = 5 * #x ^ 2 * #y ^ 3 - #y + 1 

f' ! LabPoly' Rational  Lex '["a", "y", "b", "x", "z"] 
f' = canonicalMap f  

λ> canonicalMap f ! LabPoly' Rational Grevlex '["y"] 
error: Couldn't match type ‘'False’ with ‘'True’

Type-level 
strings!

Specify variable intuitively



Why not full 
Dependent Types?

Encoding everything in Dependent Types means 
proving everything (including termination) 

We sometimes want to implement algorithms 
whose termination is remain unknown!  

We require proofs only for arity arithmetic 

We developed lemma collection and  
compiler plugin for Presburger arith to 
minimize burden. 

Floating Point Numbers doesn't form a ring; it 
can't be treated directly in such settings!

➡ Example



Type-system: 
Summary

We use weak dependent-types for type-safety: 

distinguish polynomials with different # of vars 

Type-naturals are simulatable in other langs. 

We save "manual proofs" by compiler plugin. 

Automatically induces maps between polyns. 

Rewriting Rules to reduce overheads, thanks to 
the Purity (difficult in impure langs). 

Omitted: safer quotient rings, without full dep 
types but with higher polymorphism! ➡ More

➡ More
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Property-based Testing: 
Lightweight correctness



Property-based 
Testing (PBT) [6]

Tests program against formal spec, feeding some 
# of randomly generated or enumerated inputs. 

More robust than unit tests w/ fixed inputs. 

Multiple strategies for generating inputs 

Not limited to Haskell; e.g. Hypothesis[7] in Python 

No proof required; we can even verify algorithms 
whose validity is unknown.



Example

prop_division ! ℚ ! Property 
prop_division q = 
  q ! 0 !! (recip q * q ! 1 && q * recip q ! 1) 
  && q * 1 ! q && 1 * q = q 

prop_passesSTest n = 
  forAll (idealOfArity n) $ \ i ! 
  let gs = calcGroebnerBasis i 
  in all (isZero . (`modPoly` gs)) 
       [sPoly f g | f ! gs, g ! gs, f ! g]

Every non-zero 
rational has inverse

1 is mult unit

S-poly of any two 
distinct elements 
reduces to zero

For all n-
variate ideal



Drawbacks
Not as rigorous as formal theorem proving as in DoCon-A; 
trade-off for flexibility. 

Testing may take much time 

Since G.b. comp has doubly-exponential worst time 
complexity, tests may explode. 

We can reduce # of inputs, at the sacrifice of the 
confidence.  

By its nature, not so good at treating existential props. 

Invoke external decision proc in such cases if available

➡ More



PBT: Summary
Checks if formal specs are satisfied by 
testing against generated inputs 

More rigorous than fixed-input unit 
tests, but less than theorem proving 

Applicable to experimental algorithms 

Available in many other languages 

Worst complexity and existential properties 
are bottlenecks for PBT.
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Current Status & 
Examples



Implemented 
Algorithms

Groebner Basis Computation 

Buchberger (naive, syzygy, sugar) 

Basis conversion (FGLM, deg-by-deg, Hilbert) 

Faugère's F5 and F4 

Quotients by Zero-dimensional ideals 

Cantor-Zassenhaus factorisation 

Fields: ℚ, 𝔽p, Galois Fields, ℚ̅ (naïve)



F5: Pseudocode in 
CLO[8]

586 Chapter 10 Additional Gröbner Basis Algorithms

A Signature-Based Algorithm

We will present a signature-based algorithm following an outline very much like
that of Buchberger’s algorithm to make connections with other approaches we have
studied more apparent. Faugère’s presentation of the original F5 algorithm looked
quite different.

Input: F = ( f1, . . . , fs), fi ∈ R

Output: φ(G), a Gröbner basis for I = ⟨ f1, . . . , fs⟩

G := ∅
P := {e1, . . . , es}
S := {− fj ei + fi ej | 1 ≤ i < j ≤ s}
WHILE P ̸= ∅ DO

g := the element of smallest signature in P
P := P \ {g}
IF Criterion(g,G ∪ S) = false THEN

h := a regular s-reduction of g by G
IF φ(h) = 0 THEN

S := S ∪ {h}
ELSE

h :=
1

LC(φ(h))
h

P := P ∪ {S(k, h) | k ∈ G and S(k, h) is regular}
G := G ∪ {h}

RETURN φ(G)

In this algorithm,G represents the current intermediate signature Gröbner basis,
and S represents a set of known syzygies on the input polynomials f1, . . . , fs. The
initial value of S is the set of Koszul syzygies—syzygies of the form encountered in
Example 1—namely, the vectors

kij = − fjei + fiej,

for all pairs of indices 1 ≤ i < j ≤ s. Note that the choice of signs here and the
definition of the >POT order makes s(kij) = LM( fi)ej (recall that we assume all
polynomials occurring are monic). The initial value ofG is ∅ and the set of standard
basis vectors in Rs [with φ(ei) = fi] are placed in a set P that will also contain
S-vectors of pairs later in the computation. Each of the ei will be considered as the
algorithm proceeds and each of them will either s-reduce to zero immediately, or
else an element will be inserted in G that will imply ei is s-reduced to zero by G.
The condition on the ei from Proposition 12 will hold because of this.



Example: F5 impl
f5 ! (Field (Coeff p), IsOrdPoly pol)! Vector p ! [(Vector p, p)] 
f5 i = runST $ do 
  let n = length i 
  gs ! newSTRef [] 
  ps ! newSTRef $ fromList [ basis n k | k ! [0!n-1]] 
  syzs ! newSTRef [ sVec im in | m ! [0!n-1], n ! [0!j-1] ] 
  whileJust_ (H.viewMin !! readSTRef ps) $ \ (Entry sig g, ps') ! do 
    ps .= ps' 
    (gs', ss') ! (,) !! readSTRef gs !! readSTRef syzs 
    unless (standardCriterion sig ss') $ do 
      let (h, ph) = reduceSignature i g gs' 
          h' = map (* injCoeff (recip $ leadCoeff ph)) h 
      if isZero ph then syzs .%= (mkEntry h : ) 
        else do 
        let adds = fromList $ mapMaybe (regSVec (ph, h')) gs' 
        ps .%= H.union adds 
        gs .%= ((monoize ph, mkEntry h') :) 
  map (\ (p, Entry _ a) ! (a, p)) !! readSTRef gs



Other Impls
Generic Matrix I/F for F4 

Pluggable Gaussian Elimination; 
users can use custom matrices. 

Using laziness and parallelism 
combinators in Hilbert-driven alg. 

Power series as infinite list, 
computing convolutions parallelly

➡ More

➡ More



Benchmarks (ms)

Our F4 impl took much execution time and not included 

Slower than state-of-the-art impl in most cases

I1 (lex) I1 (grevlex) I2 (lex) I2 (grevlex) I3 (grevlex)

Our lib

Buch 1.861 13.59 14.28 4.204 800.3

Hilb 104.4 160.2 25.64 16.76 7785

F5 0.5623 3.869 2.992 1.389 7.173

Singular
gb 2.5550 1.0554 2.5037 0.8904 0.9090

sba 0.2717 0.3768 0.2403 0.2592 0.4221

I1 := ⟨35y4 − 30xy2 − 210y2z + 3x2 + 30xz − 105z2 + 140yt − 21u,
5xy3 − 140y3z − 3x2y + 45xyz − 420yz2 + 210y2t − 25xt + 70zt + 126yu⟩

I2 := ⟨w + x + y + z, wx + xy + yz + zw, wxy + xyz + yzw + zwx, wxyz − 1⟩
I3 := ⟨x31 − x6 − x − y, x8 − z, x10 − t⟩

Faster than 
Singular's gb!

Fastest

2nd

Intel Xeon E5-2690 at 2.90 GHz, RAM 128GB, Linux 3.16.0-4 (SMP), using 10 cores



More on F5
Signature 

Order I1 (lex) I1 (grevlex) I2 (lex) I2 (grevlex) I3 (grevlex)

Our 
F5

POT 0.4138 4.262 2.837 1.286 17.62

TOP 0.5977 4.288 5.728 3.461 6.781

t-POT 0.5623 3.869 2.992 1.389 7.173

t-TOP 0.4860 3.879 3.100 1.360 7.319

d-POT 2.986 3.764 3.297 1.342 7.040

d-TOP 3.631 4.138 5.178 3.521 6.709

Singu
lar

gb 2.5550 1.0554 2.5037 0.8904 0.9090

sba 0.2717 0.3768 0.2403 0.2592 0.4221

Fastest

2nd

3rd

Some heuristics can help? (TOP for high degree.... etc.)

➡ Different Env
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Future Works & 
Conclusions



Future Works
More performance tuning needed for F4 

Hensel lifting or Chinese Remaindering for 
Matrices... 

Parallelism and GPU 

Haskell's Purity empowers parallelism 

There are several parallel matrices [9, 10] 

More Aggressive Heuristics and Rewriting? 

Mixture of theorem-proving, automated proving and 
property-based testing



Conclusions
With weak dependent-types and higher 
polymorphism, we can achieve more type-safety, 
retaining flexibility as an experimental env. 

Type-class and type naturals enables us to make 
generic and composable interface 

Rewriting Rules can reduce the overhead 

Property-based testing enables us to verify the 
impl. in a lightweight manner. 

Some methods are applicable in other paradigms!
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Thank You!



Any Questions?
With weak dependent-types and higher 
polymorphism, we can achieve more type-safety, 
retaining flexibility as an experimental env. 

Type-class and type naturals enables us to make 
generic and composable interface 

Rewriting Rules can reduce the overhead 

Property-based testing enables us to verify the 
impl. in a lightweight manner. 

Some methods are applicable in other paradigms!



Appendix



Algebraic Hierarchy 
as Type-classes

Expressing algebraic 
hierarchy intuitively 

Not so new idea 

NO proofs of 
algebraic laws 
required 

Property-based 
testing can fix this

class Additive a where 
  (+) ! a ! a ! a 

class Additive a 
   ! Monoidal a where 
  zero ! a 

!! 

class (Multiplicative a, 
       Monoidal a) 
   ! Ring a where 
  fromInteger ! ℕ ! a



Examples of 
Polynomial Rings

data Unipol r = Unipol [r] 
instance CoeffRing r ! IsOrdPoly (Unipol r) where 
  type Arity  (Unipol r) = 1 
  type Coeff  (Unipol r) = r 
  type MOrder (Unipol r) = Lex 
  !! 

data OrdPoly r ord n = Unipol (Map (OMonom ord n) r) 
instance (IsMonomialOrder ord, CoeffRing r) 
      ! IsOrdPoly (OrdPoly r ord n) where 
  type Arity  (Unipol r ord n) = n 
  type Coeff  (Unipol r ord n) = r 
  type MOrder (Unipol r ord n) = ord 
  !!

Univariate poly, 
impl. as a coeff list

Multivar poly, 
as a fin map from 

monomials



Example: Easy arity 
proofs

Example: mapping vars to the end! 

We want: injVarsEnd ! (Arity r ≤ Arity r') ! r ! r'  
with X1, …, Xn  ↦  Xm - n + 1, …, Xm. 

We use:  
injVarsOffset!(k + Arity r ≤ Arity r') ! Sing k ! r ! r'  
with X1, …, Xn  ↦  Xk + 1, …, Xk + n. 

Solution? injVarsOffset (sing ! Sing (m - n)) 

GHC cannot see  m - n + n ≤ m !

Singleton: type-level 
argument 



Convincing GHC 
with Proofs

We developed the type-natural package with 
many proofs on natural numbers 

Answer:  
withRefl (minusPlus m n Witness) $  
  injVarsOffset (sing ! Sing (m - n)) 

We also devised a type-checker plugin to 
automatically proof props within Presburger 
arithmetic. 

With helps from these, much less effort is 
needed to convince GHC.

:: (m - n) + n = m



Purity and Rewriting 
Rules: Reducing Overhead

Casting functions are implemented genericaly; 
imposes extra overhead if the mapping is trivial 

We can use Rewriting Rules to reduce overhead! 

LHS will be replace by RHS if the type matches. 

Since every expr in Haskell is pure (w/o side-
effect), we can concentrate on algebraic validity!

{-# RULES 
 "convPoly/id" convPoly = id
 "injVars/monotone"
   injVars (Poly dic) = Poly (mapKeysMonotone padZero dic) #-}

convPoly b/w same types 
must be identity

More efficient var shifting 
within specific impl.



Quotient Ring Example 
(omitted in the paper)
We can still achieve type-safe quotient rings! 

Enabled by "Implicit Configurations" [5] 
tech, which utilises Rank-N Polymorphism.

data Quot r i 
modIdeal ! Reifies i (Ideal r) ! r ! Quot r i 
withQuot ! Ideal poly 
         ! (∀i. Reifies i (Ideal poly) ! Quot poly i) 
         ! poly 

instance (Reifies i (Ideal r), IsOrdPoly r) ! Ring (Quot r i)

Quotient of ring r by an ideal i

This ∀ prevents ideal from leaking

Reading: "i carries info of an ideal / R"

We cannot 
add Quot's 

with 
different 

i's.



Existential 
Properties

Naive spec for gb(I) ⊆ I:  
 ∀ f ⃗ ∀g ∈ gb(⟨f1, ... fn⟩) ∃(c1, ..., cn) s.t. f = c1 f1 + ... + cn fn 

There is no guarantee that the tester can 
find c's by its generation strategy, 
resulting in false-negatives! 

Solution: resort to existing, external 
reliable decision procedure 

Our package calls SINGULAR in the spec.



Matrix I/FM for F4

F4 algorithm reduces g.b. to Gauss elimination 

We provide im/mutable matrices classes to make algorithm 
composable 

We also abstract selection strategies as weighting function

class MMatrix mat a where 
 scaleRow ! Mult a ! Int ! a ! mat s a ! ST s () 
  !! 

class MMatrix (Mutable mat) a ! Matrix mat a where 
  type Mutable mat ! Type ! Type 
  freeze ! Mutable mat s a ! ST s (mat a) 
  !! 
  gaussReduction ! Field a ! mat a ! mat a 

type Strategy f w = f ! f ! w 
f4 ! (Ord w, !!, Matrix mat (Coeff p)) 
   ! proxy mat ! Strategy p w ! Ideal p ! [p]



Hilbert Driven
data HPS n = HPS { taylor ! [ℕ], numerator ! Unipol ℕ } 

instance Eq (HPS a) where 
  (!) = (!) `on` numerator  
instance Additive (HPS n) where 
  HPS cs f + HPS ds g = HPS (zipWith (+) cs ds) (f + g) 
instance LeftModule (Unipol Integer) (HPS n) where 
  f .* HPS cs g = HPS (conv (taylor f ! repeat 0) cs) (f * g)  

conv ! [ℕ] ! [ℕ] ! [ℕ] 
conv (x : xs) (y : ys) = 
  let parSum a b c = a `par` b `par` c `seq` (a + b + c) in 
  x * y : 
   zipWith3 parSum (map (x*) ys) (map (y*) xs) (0 : conv xs ys)

Power series as inf list, and numerator for equality 

We use parallelism combinators in convolution!



Benchmark in Other 
Env

Signature 
Order I1 (lex) I1 (grevlex) I2 (lex) I2 (grevlex) I3 (grevlex)

Our 
F5

POT 0.3543 2.391 1.889 0.9322 11.14

TOP 0.3315 2.641 4.342 2.774 5.328

t-POT 0.7545 3.175 2.091 1.071 5.611

t-TOP 0.6171 3.458 2.148 1.026 8.779

d-POT 3.523 2.304 1.694 0.9248 4.740

d-TOP 3.164 2.822 4.204 2.697 5.519

Singu
lar

gb 3.1955 1.3231 2.9396 1.0662 1.2709

sba 0.4670 0.4502 0.3742 0.3758 0.4801

Fastest

2nd

3rd

NB: Benchmarked on my Laptop (2.8 GHz Intel 
Core i7, 16GB RAM; different than other results)


