Reflection Principle and Construction of Saturated Ideals on $\mathcal{P}_{\omega_1}\lambda$

Hiromi ISHII¹²

University of Tsukuba

Tuesday 7th November, 2017

¹This slide is available at http://bit.ly/ishii-rims17 ²This work was supported by Grant-in-Aid for JSPS Research Fellow Number 17J00479

1 Background: Filters and Saturation

2 Construction

3 Conclusion and Future Works

The Goal: Saturated Filters

 $\star\,$ In this talk, we will prove the following well-known theorem:

Theorem 1 (Foreman–Magidor–Shelah)

Let δ be a supercompact cardinal, G a Col $(\omega_1, <\delta)$ -generic filter over V. Then, in V[G], there is an \aleph_2 -saturated filter on ω_1 .

- We want to understand it more clearly and see what's going on in V^{Col(ω1,<δ)}.
- We use Reflection Principle at each intermediate stage, which generalise the following standard stationary reflection:

Theorem 2 (F.–M.–S.)

Let κ be supercompact and G a $Col(\omega_1, <\kappa)$ -generic over V. Then in V[G], for any stationary $S \subseteq \mathcal{P}_{\omega_1} \mathcal{H}_{\theta}$ there is $A \subseteq H_{\theta}$ with $|A| = \aleph_1$ such that $S \cap \mathcal{P}_{\omega_1} A$ is stationary.

Conventions

In what follows:

- By "normal filter", we mean " σ -complete normal fine filter".
- δ denotes a supercompact cardinal.
- $\bullet \ E:=\{\ \kappa\leq\delta\mid\kappa:2^\kappa\text{-s.c.}\ \},\ I:=\{\ \kappa\leq\delta\mid\kappa:\text{inaccessible}\ \}.$
- For any $A \subseteq \text{On and } \alpha \in \text{On}$, $\alpha^{+A} := \min \{ \beta \in A \mid \beta > \alpha \}$, i.e. the successor of α in A. In particular, we write $\bar{\alpha} := \alpha^{+I}$.
- $\mathbb{P}_{\alpha} := \mathsf{Col}(\omega_1, <\alpha)$, i.e. the Lévy collapse making α to be ω_2 .
- If G is a (V, \mathbb{P}_{δ}) -generic and $\alpha \leq \delta$, then $G_{\alpha} := G \cap \mathbb{P}_{\alpha}$.
- If we write $N \prec \mathcal{H}_{\theta}$, we implicitly assume N to be countable.

Let \mathcal{F} be a filter on $\mathcal{P}_{\omega_1}X$.

- $\mathcal{F}^* := \{ A \subseteq \mathcal{P}_{\omega_1} \lambda \mid A^c \in \mathcal{F} \}$ is called the *dual ideal* of \mathcal{F} .
- \mathcal{F}^+ denotes the collection of all \mathcal{F} -positive sets; i.e. $A \in \mathcal{F}^+$ iff $A \cap S \neq \emptyset$ for any $S \in \mathcal{F}$.
 - We regard \mathcal{F}^+ as a poset, ordered by the inclusion modulo $\mathcal{F}^*.$
 - We compute \mathcal{F}^+ in the universe where \mathcal{F} is defined.

Saturation and Generic Embeddings

Let \mathcal{F} be a filter on $\mathcal{P}_{\omega_1}\lambda$.

- As stated before, we will consider the *saturation* of filters.
- \mathcal{F} is κ -saturated if \mathcal{F}^+ has κ -c.c. as a forcing notion.
- We say \mathcal{F} is *saturated* if it is λ^+ -saturated.
- The notion of saturation is closely related to generic ultrapower.
 - Forcing by \mathcal{F}^+ adds an ultrafilter \dot{G} on $\mathcal{P}^V_{\omega}X$ extending \mathcal{F} .
 - \rightsquigarrow In V[G], one can consider a *generic ultrapower* Ult(V,G).

? When is Ult(V, G) well-founded?

Fact 3 (Solovay?)

If \mathcal{F} is saturated, then Ult(V, G) is always well-founded and its transitive collapse M is closed under λ -sequences.

1 Background: Filters and Saturation

2 Construction

3 Conclusion and Future Works

Table of Contents

1 Background: Filters and Saturation

2 Construction

Overview

- Witnessing Maximality
- Concrete Definition and Universality of Clubs
- Coherent stationary sequence and Reflection Principles
- Construction on $\mathcal{P}_{\omega_1}\lambda$

• We construct an increasing normal filters $\langle \mathcal{F}_{\kappa} | \kappa \leq \delta \rangle$, where $\mathcal{F}_{\kappa} = (\text{the normal closure of } \langle S_{\mu} | \mu \in E \cap \kappa \rangle)^{V[G_{\kappa}]}$.

- We construct an increasing normal filters $\langle \mathcal{F}_{\kappa} | \kappa \leq \delta \rangle$, where $\mathcal{F}_{\kappa} = (\text{the normal closure of } \langle S_{\mu} | \mu \in E \cap \kappa \rangle)^{V[G_{\kappa}]}$.
 - We use Reflection Principle to ensure the nontriviality of \mathcal{F}_{κ} 's.

- We construct an increasing normal filters $\langle \mathcal{F}_{\kappa} | \kappa \leq \delta \rangle$, where $\mathcal{F}_{\kappa} = (\text{the normal closure of } \langle S_{\mu} | \mu \in E \cap \kappa \rangle)^{V[G_{\kappa}]}$.
 - We use Reflection Principle to ensure the nontriviality of \mathcal{F}_{κ} 's.
- For any m.a.c. A of F_δ, an easy closure argument shows that there are club many κ < δ with A_κ := A ∩ V[G_κ] ∈ V[G_κ] and A_κ is an m.a.c. of F_κ in V[G_κ].

- We construct an increasing normal filters $\langle \mathcal{F}_{\kappa} | \kappa \leq \delta \rangle$, where $\mathcal{F}_{\kappa} = (\text{the normal closure of } \langle S_{\mu} | \mu \in E \cap \kappa \rangle)^{V[G_{\kappa}]}$.
 - We use Reflection Principle to ensure the nontriviality of \mathcal{F}_{κ} 's.
- For any m.a.c. \mathcal{A} of \mathcal{F}_{δ} , an easy closure argument shows that there are club many $\kappa < \delta$ with $\mathcal{A}_{\kappa} := \mathcal{A} \cap V[G_{\kappa}] \in V[G_{\kappa}]$ and \mathcal{A}_{κ} is an m.a.c. of \mathcal{F}_{κ} in $V[G_{\kappa}]$.
- At each stage, we add stationary set S_κ to ensure that every m.a.c. of F_κ remains maximal in F_μ for any μ ≥ κ.

- We construct an increasing normal filters $\langle \mathcal{F}_{\kappa} | \kappa \leq \delta \rangle$, where $\mathcal{F}_{\kappa} = (\text{the normal closure of } \langle S_{\mu} | \mu \in E \cap \kappa \rangle)^{V[G_{\kappa}]}$.
 - We use Reflection Principle to ensure the nontriviality of \mathcal{F}_{κ} 's.
- For any m.a.c. A of F_δ, an easy closure argument shows that there are club many κ < δ with A_κ := A ∩ V[G_κ] ∈ V[G_κ] and A_κ is an m.a.c. of F_κ in V[G_κ].
- At each stage, we add stationary set S_{κ} to ensure that every m.a.c. of \mathcal{F}_{κ} remains maximal in \mathcal{F}_{μ} for any $\mu \geq \kappa$.
- $\rightsquigarrow \mathcal{A} = \mathcal{A}_{\kappa} \in V[G_{\kappa}] \text{ for some } \kappa < \delta.$

- We construct an increasing normal filters $\langle \mathcal{F}_{\kappa} | \kappa \leq \delta \rangle$, where $\mathcal{F}_{\kappa} = (\text{the normal closure of } \langle S_{\mu} | \mu \in E \cap \kappa \rangle)^{V[G_{\kappa}]}$.
 - We use Reflection Principle to ensure the nontriviality of \mathcal{F}_{κ} 's.
- For any m.a.c. \mathcal{A} of \mathcal{F}_{δ} , an easy closure argument shows that there are club many $\kappa < \delta$ with $\mathcal{A}_{\kappa} := \mathcal{A} \cap V[G_{\kappa}] \in V[G_{\kappa}]$ and \mathcal{A}_{κ} is an m.a.c. of \mathcal{F}_{κ} in $V[G_{\kappa}]$.
- At each stage, we add stationary set S_{κ} to ensure that every m.a.c. of \mathcal{F}_{κ} remains maximal in \mathcal{F}_{μ} for any $\mu \geq \kappa$.
- $\rightsquigarrow \ \mathcal{A} = \mathcal{A}_{\kappa} \in V[G_{\kappa}] \text{ for some } \kappa < \delta.$
 - There are only $(2^{\aleph_1})^{V[G_{\kappa}]} < \delta = \aleph_2^{V[G_{\delta}]}$ subsets of ω_1 in $V[G_{\kappa}]$, hence we get $|\mathcal{A}| = |\mathcal{A}_{\kappa}| < \aleph_2$.

Table of Contents

1 Background: Filters and Saturation

2 Construction

- Overview
- Witnessing Maximality
- Concrete Definition and Universality of Clubs
- Coherent stationary sequence and Reflection Principles
- Construction on $\mathcal{P}_{\omega_1}\lambda$

Witnessing Maximality, I

• We use the following classical characterisation of maximality:

Fact 4

Let \mathcal{F} be a normal filter on ω_1 . Then the supremum of $\mathcal{A} = \{ A_{\alpha} \mid \alpha < \omega_1 \} \subseteq \mathcal{F}^+$ in \mathcal{F}^+ is given by the diagonal union. In particular, if \mathcal{A} is an antichain then \mathcal{A} is maximal if and only if $\nabla_{\alpha} A_{\alpha} \in \mathcal{F}$.

- Note: Since we deal with Lévy collapse, every m.a.c. of \mathcal{F}_{κ} 's $(\kappa < \delta)$ is eventually of size \aleph_1 .
- $\stackrel{\rightsquigarrow}{\longrightarrow} \text{ In particular, for every m.a.c. } \mathcal{A} \text{ of } \mathcal{F}_{\kappa} \text{, we can add stationary} \\ \text{set witnessing } \bigtriangledown \mathcal{A} \in \mathcal{F}_{\kappa^{+I}} \text{ at the stage } \kappa^{+I}!$
 - As usual, we want to use elementary submodels to make argument simpler.

Witnessing Maximality, II

• In $V[G_{\kappa^+}]$, we can project large submodels in $V[G_{\kappa}]$ onto \aleph_1 to get desired stationary set to be added.

Definition 5

Let $\kappa < \delta$. Since, in $V[G_{\bar{\kappa}}]$, $\mathcal{H}^{(\kappa)} := \mathcal{H}^{V[G_{\kappa}]}_{\kappa^+}$ is of size \aleph_1 , one can pick $\left\langle \dot{N}^{\kappa}_{\alpha} \middle| \alpha < \omega_1 \right\rangle$ such that, in $V[G_{\bar{\kappa}}]$, $\mathcal{H}^{(\kappa)} = \bigcup_{\alpha} \dot{N}^{\kappa}_{\alpha}$ and $\left\langle \dot{N}^{\kappa}_{\alpha} \middle| \alpha < \omega_1 \right\rangle$ is a continuous elementary \in -chain. Then we define, in $V[G_{\bar{\kappa}}]$, $\pi_{\kappa} : \mathcal{PP}_{\aleph_1}\mathcal{H}^{(\kappa)} \to \mathcal{P}\omega_1$ by:

$$\pi_{\kappa}(\tilde{S}) := \left\{ \alpha < \omega_1 \mid N_{\alpha}^{\kappa} \in \tilde{S} \right\}.$$

Remark

 $\tilde{S} \subseteq \mathcal{P}_{\aleph_1} \mathcal{H}^{(\kappa)}$ is stationary iff $\pi_{\kappa}(\tilde{S})$ is stationary in ω_1 .

Witnessing Maximality, III: Indestructibility Lemma

Finally, we can state what the "stationary set witnessing maximality" is:

Lemma 6

Suppose $\kappa < \delta$ be inaccessible, $\mu \ge \kappa^+$ and A an antichain in \mathcal{F}_{κ}^+ . In $V[G_{\kappa}]$, let

$$\tilde{S}_{\mathcal{A}} := \left\{ \left. N \prec \mathcal{H}_{\kappa^+}^{V[G_{\kappa}]} \right| \mathcal{A}, \mathcal{F}_{\kappa} \in N \land N \cap \omega_1 \in \bigcup (\mathcal{A} \cap N) \right\}.$$

In $V[G_{\mu}]$, if \mathcal{F} is a normal filter on ω_1 extending \mathcal{F}_{κ} , $(\mathcal{F}_{\kappa}^+) \cap V[G_{\kappa}] \subseteq \mathcal{F}^+$ and $\pi_{\kappa}(\tilde{S}_{\mathcal{A}}) \in \mathcal{F}$, then \mathcal{A} is maximal in \mathcal{F} .

▶ Proof

• Instead of adding $\tilde{S}_{\mathcal{A}}$ for all relevant m.a.c.'s \mathcal{A} of \mathcal{F}_{κ} , we replace it by the single set.

- Instead of adding $\tilde{S}_{\mathcal{A}}$ for all relevant m.a.c.'s \mathcal{A} of \mathcal{F}_{κ} , we replace it by the single set.
- Let, in $V[G_{\kappa}]$,

$$\tilde{S}_{\kappa} := \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \right| \begin{array}{c} \kappa, \mathcal{F}_{\kappa} \in N \\ \forall \mathcal{A} \in N: \text{ m.a.c. in } \mathcal{F}_{\kappa}, N \cap \omega_{1} \in \bigcup(\mathcal{A} \cap N) \end{array} \right\}$$

and, $S_{\kappa} := \pi_{\kappa}(\tilde{S}_{\kappa})$ in $V[G_{\kappa^+}]$.

- Instead of adding $\tilde{S}_{\mathcal{A}}$ for all relevant m.a.c.'s \mathcal{A} of \mathcal{F}_{κ} , we replace it by the single set.
- Let, in $V[G_{\kappa}]$,

$$\tilde{S}_{\kappa} := \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \right|_{\forall \mathcal{A} \in N: \text{ m.a.c. in } \mathcal{F}_{\kappa}, N \cap \omega_{1} \in \bigcup(\mathcal{A} \cap N)} \right\}$$

and, $S_{\kappa} := \pi_{\kappa}(\tilde{S}_{\kappa})$ in $V[G_{\kappa^+}]$. • $\mathcal{F}_{\mu} :=$ the normal closure of $\langle S_{\kappa} | \kappa \in E \cap \mu \rangle$ for any $\mu \leq \delta$.

- Instead of adding \tilde{S}_A for all relevant m.a.c.'s A of \mathcal{F}_{κ} , we replace it by the single set.
- Let, in $V[G_{\kappa}]$,

$$\tilde{S}_{\kappa} := \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \right|_{\forall \mathcal{A} \in N: \text{ m.a.c. in } \mathcal{F}_{\kappa}, N \cap \omega_{1} \in \bigcup(\mathcal{A} \cap N)} \right\}$$

and, $S_\kappa:=\pi_\kappa(ilde S_\kappa)$ in $V[G_{\kappa^+}].$

• $\mathcal{F}_{\mu} :=$ the normal closure of $\langle S_{\kappa} | \kappa \in E \cap \mu \rangle$ for any $\mu \leq \delta$. \rightsquigarrow Since there are club many N with $\mathcal{A} \in N$, we have $S_{\mathcal{A}} \in \mathcal{F}_{\bar{\kappa}}$ for each m.a.c. in \mathcal{F}_{κ} .

- Instead of adding \tilde{S}_A for all relevant m.a.c.'s A of \mathcal{F}_{κ} , we replace it by the single set.
- Let, in $V[G_{\kappa}]$,

$$\tilde{S}_{\kappa} := \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \right|_{\forall \mathcal{A} \in N: \text{ m.a.c. in } \mathcal{F}_{\kappa}, N \cap \omega_{1} \in \bigcup(\mathcal{A} \cap N)} \right\}$$

and, $S_{\kappa} := \pi_{\kappa}(\tilde{S}_{\kappa})$ in $V[G_{\kappa^+}]$.

- $\mathcal{F}_{\mu} :=$ the normal closure of $\langle S_{\kappa} | \kappa \in E \cap \mu \rangle$ for any $\mu \leq \delta$. \rightsquigarrow Since there are club many N with $\mathcal{A} \in N$, we have $S_{\mathcal{A}} \in \mathcal{F}_{\bar{\kappa}}$ for each m.a.c. in \mathcal{F}_{κ} .
- ? Is \mathcal{F}_{μ} nontrivial? Does $\mathcal{F}_{\kappa}^{+} \cap V[G_{\kappa}] \subseteq \mathcal{F}_{\mu}^{+}$ hold for any $\kappa < \mu \leq \delta$?

- Instead of adding $\tilde{S}_{\mathcal{A}}$ for all relevant m.a.c.'s \mathcal{A} of \mathcal{F}_{κ} , we replace it by the single set.
- Let, in $V[G_{\kappa}]$,

$$\tilde{S}_{\kappa} := \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \right| \begin{array}{c} \kappa, \mathcal{F}_{\kappa} \in N, & N \cap \kappa \in \Delta_{\kappa} \\ \forall \mathcal{A} \in N: \text{ m.a.c. in } \mathcal{F}_{\kappa}, N \cap \omega_{1} \in \bigcup (\mathcal{A} \cap N) \end{array} \right\} \right\}$$

and, $S_{\kappa} := \pi_{\kappa}(\tilde{S}_{\kappa})$ in $V[G_{\kappa^+}]$.

- $\mathcal{F}_{\mu} :=$ the normal closure of $\langle S_{\kappa} | \kappa \in E \cap \mu \rangle$ for any $\mu \leq \delta$. \rightsquigarrow Since there are club many N with $\mathcal{A} \in N$, we have $S_{\mathcal{A}} \in \mathcal{F}_{\bar{\kappa}}$ for each m.a.c. in \mathcal{F}_{κ} .
- ? Is \mathcal{F}_{μ} nontrivial? Does $\mathcal{F}_{\kappa}^{+} \cap V[G_{\kappa}] \subseteq \mathcal{F}_{\mu}^{+}$ hold for any $\kappa < \mu \leq \delta$?
 - \rightsquigarrow We need Δ 's to take care of these.

Table of Contents

1 Background: Filters and Saturation

2 Construction

- Overview
- Witnessing Maximality
- Concrete Definition and Universality of Clubs
- Coherent stationary sequence and Reflection Principles
- Construction on $\mathcal{P}_{\omega_1}\lambda$

Putting it all together

The entire construction so far is as follows. For any $\kappa \leq \delta,$ let

$$\begin{split} \mathcal{F}_{\kappa} &:= \text{the normal closure of } \left\langle S_{\mu} \, \big| \, \mu \in E \cap \kappa \right\rangle, \\ \Delta_{\kappa} &:= \left\{ \left. A \in \mathcal{P}_{\aleph_{1}} \kappa \right| \, A \cap \omega_{1} \in \bigcap_{\mu \in E \cap A} S_{\mu} \right\}, \\ \tilde{S}_{\kappa} &:= \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \, \right| \, \left. \begin{matrix} |N| = \aleph_{0}, & \Delta_{\kappa}, \kappa \in N, & N \cap \kappa \in \Delta_{\kappa}, \\ \forall \mathcal{A} \in N : \mathcal{F}_{\kappa} & N \cap \omega_{1} \in \bigcup(\mathcal{A} \cap N). \end{matrix} \right\} \end{split}$$

Then, in $V[G_{\bar{\kappa}}]$, $S_{\kappa} := \pi_{\kappa}(\tilde{S}_{\kappa})$. We have to confirm:

• Each \mathcal{F}_{κ} is nontrivial,

• Coherency: $\mathcal{F}_{\kappa}^+ \cap V[G_{\kappa}] \subseteq \mathcal{F}_{\mu}^+$ for any $\kappa < \mu \leq \delta$.

We slightly modify the above construction and *cheat* to make proof simpler.

Cheating: Universality of the club filter

* We exploit *the universality of* $C_{\omega_1,X}$ to simplify argument:

Fact 7 (Burke)

For any (possibly trivial) filter \mathcal{F} on $\mathcal{P}_{\omega_1}X$ normally generated by $\langle S_{\alpha} | \alpha < \kappa \rangle$, TFAE:

- **1** \mathcal{F} is a nontrivial normal filter.

$$A \in \mathcal{F} \iff \Delta \subseteq_{\mathsf{NS}_{\omega_1,\kappa}} \{ z \in \mathcal{P}_{\mu}Y \mid z \cap X \in A \}.$$

We write $\mathcal{F} = \mathcal{F}_{\omega_1, X}(\Delta) = \operatorname{pr}_X(\mathcal{C}_{\omega_1, \kappa} \upharpoonright \Delta)$ for such \mathcal{F} .

Indeed, Farah [3] essentially showed $\mathcal{F}_{\kappa} = \operatorname{pr}_{\omega_1}(\mathcal{C}_{\omega_1,\kappa} \upharpoonright \Delta_{\kappa})$. \rightsquigarrow Rather, we adopt this as *the definition* of \mathcal{F}_{κ} !

Characterisation of $\mathcal{F}_{\kappa,X}(\Delta)$

- \star We characterise $\mathcal{F}_{\kappa,X}(\Delta)$ in terms of elementary submodels.
- First, easy closure argument shows:

Fact 8

If $C \subseteq \mathcal{P}_{\omega_1}X$ is club, $X, C \in N \prec \mathcal{H}_{\theta}$ where θ is sufficiently large, then $N \cap X \in C$.

Then we have the following:

Lemma 9

For any stationary $\Delta \subseteq \mathcal{P}_{\omega_1}X$, TFAE:

- $\ \, \mathbf{0} \ \, A \in \mathcal{F}_{\omega_1}(\Delta),$
- for any $N \prec \mathcal{H}_{\theta}$, if $\Delta, A, X \in N$ and $N \cap X \in \Delta$ then $N \cap \omega_1 \in A$,
- So for club many $N \prec \mathcal{H}_{\theta}$, if $\Delta, A, X \in N$ and $N \cap X \in \Delta$ then $N \cap \omega_1 \in A$.

Our Final Definition

For any $\kappa \leq \delta,$ let

$$\begin{split} \Delta_{\kappa} &:= \left\{ \left. A \in \mathcal{P}_{\aleph_{1}} \kappa \right| A \cap \omega_{1} \in \bigcap_{\mu \in E \cap A} S_{\mu} \right\}, \\ \mathcal{F}_{\kappa} &:= \mathsf{pr}_{\omega_{1}}(\mathcal{C}_{\omega_{1},\kappa} \upharpoonright \Delta_{\kappa}), \\ \tilde{S}_{\kappa} &:= \left\{ \left. N \prec \mathcal{H}_{\kappa^{+}}^{V[G_{\kappa}]} \right| \begin{array}{c} |N| = \aleph_{0}, \quad \Delta_{\kappa}, \kappa \in N, \quad N \cap \kappa \in \Delta_{\kappa}, \\ \forall \mathcal{A} \in N : \text{m.a.c. of } \mathcal{F}_{\kappa} \ N \cap \omega_{1} \in \bigcup(\mathcal{A} \cap N). \end{array} \right. \end{split}$$

Then, in $V[G_{\bar{\kappa}}]$, let $S_{\kappa} := \pi_{\kappa}(\tilde{S}_{\kappa})$.

- Fact 7 assures $S_{\kappa} \in \mathcal{F}_{\bar{\kappa}}$.
- Remains to show:
 - Each Δ_{κ} is stationary in $\mathcal{P}_{\aleph_1}\kappa$,
 - Coherency: $\mathcal{F}_{\kappa}^+ \cap V[G_{\kappa}] \subseteq \mathcal{F}_{\mu}^+$ for any $\kappa < \mu$.

 \rightsquigarrow We isolate sufficient condition for for these properties.

Table of Contents

1 Background: Filters and Saturation

2 Construction

- Overview
- Witnessing Maximality
- Concrete Definition and Universality of Clubs
- Coherent stationary sequence and Reflection Principles
- Construction on $\mathcal{P}_{\omega_1}\lambda$

What is a sufficient condition?

Definition 10

- Here, $N \prec_{\lambda} N^*$ means $N \prec N^*$ and $N \cap \lambda = N^* \cap \lambda$.
 - Existing proofs require N^* and N to coincide up to $\nu,$ but we find that ω_1 is sufficient.
- The last condition needs more explanation.

Elementary Submodels and Generic Condition

* Extension Property discusses on *generic conditions*:

Definition 11

Let \mathbb{P} be a poset \mathbb{P} , θ sufficiently large and $\mathbb{P} \in N \prec \mathcal{H}_{\theta}$. $p \in \mathbb{P}$ is (N, \mathbb{P}) -generic (or, master) if $p \Vdash "\check{N}[\dot{G}] \cap \mathsf{On} = \check{N} \cap \mathsf{On}"$.

Fact 12 (Shelah [7])

The following are equivalent:

- **1** p is (N, \mathbb{P}) -generic,
- $\ 2 \ \ p \Vdash \ \ "(N[G], N, G, <) \prec (\mathcal{H}_{\theta}[G], \mathcal{H}^V_{\theta}, G, <) ",$
- $\ \, {\mathfrak o} \ \, p \Vdash \ \, {}^{\!\!\!\!\!}^{\!\!\!\!} N[G] \cap V = N \, {}^{\!\!\!\!\!\!\!\!\!\!\!}^{\!\!\!\!}.$

Remark

Every $N \prec (\mathcal{H}_{\theta}[G], \mathcal{H}_{\theta}^{V}, G, <)$ can be written as $N = N_{0}[G]$ for some $N \prec \mathcal{H}_{\theta}^{V}$ and $N_{0} \cap V = N$.

Extension of Generic Condition

Classical results on genericity and properness:

Definition 13

A forcing notion \mathbb{P} is *proper* if for any countable $N \prec \mathbb{P}$, if \mathbb{P} and $p \in N \cap \mathbb{P}$, then there is (N, \mathbb{P}) -generic $q \leq p$.

Fact 14

•
$$\operatorname{Col}(\lambda, < \kappa)$$
 is proper if $\lambda \ge \omega_1$.

• \mathbb{P} is proper iff it preserves every stationary $S \subseteq \mathcal{P}_{\aleph_1} X$.

The following illustrates that Extension Property is a strengthening of properness, which requires \mathcal{F}_{μ} -positives to be preserved:

Lemma 15

If $\vec{\Delta}$ is c.s.s and $\nu < \mu$, then, in $V[G_{\mu}], \mathcal{F}_{\nu}^{+} \cap V[G_{\nu}] \subseteq \mathcal{F}_{\mu}^{+}$.

▶ Proof

Use of Extension Property: Stationarity

Stationarity of each Δ_{μ} 's can be similarly proven:

Lemma 16

Let
$$\langle \Delta_{\mu} | \mu_0 \leq \mu \leq \kappa \rangle$$
 be c.s.s. Then
 $\Vdash_{\mu} ``\Delta_{\mu} : stationary in \mathcal{P}_{\omega_1}\mu'' \text{ for any } \mu \in E.$

Proof.

Almost the same of coherency of positive sets, but much easier because we don't have to take care of $N \cap \omega_1$.

The correctness of our Δ 's and Reflection Principle

 \star So it remains to show that our $\vec{\Delta}$ is indeed coherent:

Lemma 17

Our definition of Δ_{μ} satisfies the definition of c.s.s.

- All conditions trivially hold, except for Extension Property.
- Here, a kind of Reflection Principle plays a crucial role:

Definition 18 (Positive-set Reflection Principle)

Let $\Delta \subseteq \mathcal{P}_{\omega_1}\kappa$ and $\lambda < \kappa$. The Positive-set Reflection Principle, PRP_{ω_1}(Δ), is the following assertion: For any sufficiently large θ and stationary $S \subseteq \{ N \prec \mathcal{H}_{\theta} \mid N \cap \kappa \in \Delta \}$, there is a continuous \in -elementary chain $\langle N_{\alpha} \prec \mathcal{H}_{\theta} \mid \alpha < \omega_1 \rangle$ with $\{ \alpha < \omega_1 \mid N_{\alpha} \in S \} \in \mathcal{F}_{\omega_1}(\Delta)^+$

 $\stackrel{\sim}{\longrightarrow} \mathsf{PRP}_{\omega_1}(\Delta) \text{ implies the classical Stationary Reflection Principle restricted to } \Delta \text{ if } \omega_1^\omega = \omega_1.$

PRP for coherent sequence

Theorem 19

Let $\langle \Delta_{\alpha} | \alpha \leq \kappa \rangle$ be c.s.s. and κ be 2^{κ} -supercompact. Then $\mathsf{PRP}_{\omega_1}(\Delta_{\kappa})$ holds.

Sketch of Proof.

- Using 2^{κ} -s.c. embedding j with c.p. κ , we argue as standard stationary reflection.
- In particular, we can divide $\tilde{H} := j `` \mathcal{H}_{\kappa^+}^{V[G]}$ into ω_1 -chain and project $j(\Delta_{\kappa})$ along it $T := \{ \alpha < \omega_1 \mid N_{\alpha}^* \in j(\Delta_{\kappa}) \}.$
- T sits in M^{κ+I} by closure, and it behaves well up to κ^{+I}; then we use Extension Property in M to lift it up to j(κ).

▶ Proof

The Proof of Extension Property

We are now at the point that we can prove the EP of $\Delta_{\kappa}{}^{\prime}{\rm s},$ i.e:

Lemma 20

Let $\mu < \kappa \in Cl(E)$. Suppose, in $V, N \prec \mathcal{H}^V_{\theta}$, $p \in \mathbb{P}_{\kappa} \cap N$, q is (N, \mathbb{P}_{μ}) -generic, $p \parallel q$ and $q \Vdash_{\mu} "N \cap \mu \in \Delta_{\mu} "$. Then, there are $N^* \succ N$ and $(N^*, \mathbb{P}_{\kappa})$ -generic $r \leq p, q$ such that $N^* \cap \omega_1 = N \cap \omega_1$ and $r \Vdash_{\kappa} "N^* \cap \kappa \in \Delta_{\kappa} "$.

- Although the range of κ is restricted to Cl(E), it poses no difficulty, since E is stationary.
- Prove this by induction on (κ, μ) , divided into three cases:
 - Successor step: $\kappa = \mu^{+E}$ we use PRP here,
 - Essentially successor step: κ > μ^{+E}, but κ* := sup(E ∩ κ) < κ. In this case, we use I.H. to extend p, q to P_{κ*}-generic, and then it trivially extends to P_κ-generic, since there is no s.c's in-between.
 - Limit Step: $\kappa > \mu^{+E}$ and $\kappa = \sup(E \cap \kappa)$.

Reflection Principle and Successor step

Clearly, the successor step is reduced to the following:

Lemma 21

Let κ be 2^{κ} -s.c. and EP hold up to κ . In $V[G_{\kappa}]$, if $N \prec \mathcal{H}_{\theta}$ is such that $N \cap \kappa \in \Delta_{\kappa}$, then there is $N^* \succ_{\omega_1} N$ with $N^* \cap \kappa \in \Delta_{\kappa}$ and $N^* \cap H_{\mu^+} \in \tilde{S}_{\kappa}$.

Which is obtained by easy bookkeeping argument, repeatedly applying the following:

Lemma 22 (One-step lemma)

Let κ be 2^{κ} -s.c. and EP hold up to κ . In $V[G_{\kappa}]$, suppose $\mathcal{A} \in N \prec \mathcal{H}_{\theta}[G_{\kappa}]$ is a m.a.c. in \mathcal{F}_{κ}^{+} and $N \cap \kappa \in \Delta_{\kappa}$. Then, there is some $N^{*} \succ_{\omega_{1}} N$ with $N^{*} \cap \omega_{1} \in \bigcup (N^{*} \cap \mathcal{A})$ and $N^{*} \cap \kappa \in \Delta_{\kappa}$.

Proof of One-step Lemma from PRP

Proof. In view of 8, it suffices to show that $T := \{ N \prec \mathcal{H}_{\kappa^+} \mid N \cap \kappa \in \Delta_{\kappa}, \mathcal{F}_{\kappa}, \mathcal{A} \in N \} \text{ is contained in, modulo club, the following}^3:$

$$\nabla(\mathcal{A}) := \left\{ N \prec \mathcal{H}_{\kappa^+} \middle| \exists a \in \mathcal{A} \left[N^* := \operatorname{Sk}(N \cup \{a\}) \succ_{\omega_1} N, \\ N^* \cap \omega_1 \in a, N^* \cap \kappa \in \Delta_{\kappa} \right] \right\}$$

To see that, we fix arbitrary stationary $A \subseteq T$ and show $A \cap \nabla(\mathcal{A}) \neq \emptyset$. By assumption, we can use $\mathsf{PRP}_{\omega_1}(\Delta_\kappa)$ for A; so pick continuous \in -elementary chain $\langle N_\alpha \mid \alpha < \omega_1 \rangle$ of \mathcal{H}_{κ^+} such that $Z := \{ \alpha < \omega_1 \mid N_\alpha \in A \} \in \mathcal{F}_{\kappa}^+$. By the definition of \mathcal{F}_{κ} , we also have $D := \{ N \cap \omega_1 \mid N \cap \kappa \in \Delta_\kappa, N \prec \mathcal{H}_\theta \} \in \mathcal{F}_\kappa$. Since \mathcal{A} is a m.a.c. in \mathcal{F}_{κ}^+ , we can pick $a \in \mathcal{A}$ with $a \cap D \cap Z \in \mathcal{F}^+$.

³To be more rigorous, we have to use "Catching-your-tails" argument.

Proof of One-Step Lemma (cont'd)

Hence, we can pick $N_0^* \prec \mathcal{H}_{\theta}$ such that:

$$\ \, \bullet, A, \mathcal{A}, \vec{N} \in N_0^*,$$

②
$$lpha:=N_0^*\cap\omega_1\in a\cap D\cap Z$$
, and

$$N_0^* \cap \kappa \in \Delta_{\kappa}.$$

Then $N := N_{\alpha}$ is as desired. Indeed, $N^* := N \cap \mathcal{H}_{\kappa^+}$ is ω_1 -extension of N witnessing $N \in A \cap \nabla(\mathcal{A})$.

Easy Sketch for Limit Step

The Limit Step is essentially showed by repeating successor step for countably-many times. In particular, it is enough to construct $\langle N_n, p_n, q_n, \mu_n | n < \omega \rangle$ with:

N = N₀ ≺_{\lambda} N₁ ≺_{\lambda} N₂ ≺_{\lambda}...,
µ_n ≯ κ if cf(κ) = ω; dom(p_n) ⊆ µ_{n+1} otherwise,
µ = µ₀ < µ₁ < ..., κ_n < µ_{n+1} ∈ N_n ∩ κ ∩ E,
q = q₀ ≥ q₁ ≥ q₂,..., q_n: (N_n, ℙ_{κ_n})-generic, q_{n+1} ≤ p_n ↾ µ_{n+1}, and q_n ⊨ N_n ∩ µ_n ∈ Δ_{µ_n}, and
p = p₀ ≥ p₁ ≥ p₂,..., p_{n+1} ∈ D_n ∩ N_{n+1} and p_n || q_n.
Then, r := ⋃_n q_n will be as desired. The case-splitting on cf(κ) is needed to ensure r ≤ p, q by fusion argument.

Summary

- We add stationary sets to the club filter, ensuring each m.a.c. *A* is added at some intermediate stage.
- This is done by combinatorics of elementary submodels and collapsed onto ω_1 by Lévy collapse.
- We adopt the characterisation exploiting the universality of club filter, which reduces some burden of proof:
 - Nontriviality of the resulting filter is almost trivial.
 - **②** Sets like $\{ N \cap \omega_1 \mid N \cap \kappa \in \Delta_{\kappa} \}$ is easily shown to be measure one.
- We formulate abstract concept of *coherent stationary sequence*, which admits coherency of positive sets and a kind of Reflection Principle.

Table of Contents

1 Background: Filters and Saturation

2 Construction

- Overview
- Witnessing Maximality
- Concrete Definition and Universality of Clubs
- Coherent stationary sequence and Reflection Principles
- Construction on $\mathcal{P}_{\omega_1}\lambda$

Construction on $\mathcal{P}_{\omega_1}\lambda$

The result generalises to the following, formerly unmentioned one:

Theorem 23 (I.)

Let δ be s.c, $\lambda < \delta$ regular, and G a $Col(\lambda, <\delta)$ -generic filter over V. Then, in V[G], there is a λ^+ -saturated filter on $\mathcal{P}_{\omega_1}\lambda$.

- Use \prec_{λ} -extension instead of \prec_{ω_1} -extension.
- Instead of ∈-chain, we use *continuous directed systems* of elementary substructures; i.e. ⟨N_x | x ∈ P_{ω1}κ⟩ s.t.

$$N_x = \bigcup_{z \in [x]^{<\omega}} N_z \text{ (if } |x| \ge \aleph_0), \quad x \subseteq N_x \prec N_y \prec \mathcal{H} \text{ if } x \subseteq y.$$

- We have, for club many $x \in \mathcal{P}_{\omega_1}\kappa$, $N_x \cap \kappa = x$.
- $\mathsf{PRP}_{\lambda}(\Delta)$ can be similarly formulated and proven.

1 Background: Filters and Saturation

2 Construction

• We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - ★ In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.
- We successively used Reflection Principles at each intermediate stages.

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.
- We successively used Reflection Principles at each intermediate stages.

Can we derive saturation by using Reflection Principle *just* once, as in presaturation proofs, for example, in Shioya [9]?

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.
- We successively used Reflection Principles at each intermediate stages.
 - Can we derive saturation by using Reflection Principle *just once*, as in presaturation proofs, for example, in Shioya [9]?
 - To that end, we have to revise the definition of c.s.s. so that it doesn't depend on the particular structure of Lévy collapses.

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.
- We successively used Reflection Principles at each intermediate stages.
 - ? Can we derive saturation by using Reflection Principle just once, as in presaturation proofs, for example, in Shioya [9]?
 - To that end, we have to revise the definition of c.s.s. so that it doesn't depend on the particular structure of Lévy collapses.
- How about the case $\mathcal{P}_{\kappa}\lambda$, where $\kappa > \omega_1$?

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.
- We successively used Reflection Principles at each intermediate stages.
 - ? Can we derive saturation by using Reflection Principle *just once*, as in presaturation proofs, for example, in Shioya [9]?
 - To that end, we have to revise the definition of c.s.s. so that it doesn't depend on the particular structure of Lévy collapses.
- ? How about the case $\mathcal{P}_{\kappa}\lambda$, where $\kappa > \omega_1$?
 - Directed systems don't behave as desired in $\mathcal{P}_\kappa\lambda\text{-case}...$

- We give a clear construction of saturated filters on $\mathcal{P}_{\omega_1}\lambda$.
 - In contrast to existing proofs, we explicitly exploit the universality of club filters, which greatly simplifies proofs.
 - * We define the notion of a *coherent stationary sequence* and formulated associated Reflection Principles.
- We successively used Reflection Principles at each intermediate stages.
 - Can we derive saturation by using Reflection Principle *just once*, as in presaturation proofs, for example, in Shioya [9]?
 - To that end, we have to revise the definition of c.s.s. so that it doesn't depend on the particular structure of Lévy collapses.
- ? How about the case $\mathcal{P}_{\kappa}\lambda$, where $\kappa > \omega_1$?
 - Directed systems don't behave as desired in $\mathcal{P}_\kappa\lambda\text{-case}...$
 - Is there any other application of this construction?

References I

- Uri Abraham, *Proper Forcing*, Handbook of Set Theory, ed. by Matthew Foreman and Akihiro Kanamori, Springer Netherlands, 2010, chap. 5, pp. 333–394, ISBN: 978-1-4020-5764-9.
- Mohamed Bekkali, *Topics in Set Theory: Lebesgue Measurability, Large Cardinals, Forcing Axioms, Rho-functions*, Lecture Notes in Mathematics 1476, Springer Berlin Heidelberg, 1991, ISBN: 978-3-540-54121-9, DOI: 10.1007/BFb0098398.
- [3] Ilijas Farah, A proof of the Σ₁²-absoluteness theorem, Advances in Logic, Contemporary Mathematics 425 (2007), ed. by S. Jackson S. Gao and Y. Zhang, pp. 9–22.
- [4] Matthew Foreman, Ideals and Generic Elementary Embeddings, Handbook of Set Theory, ed. by Matthew Foreman and Akihiro Kanamori, Springer Netherlands, 2010, chap. 13, pp. 885–1147, ISBN: 978-1-4020-5764-9.

References II

- [5] Thomas Jech, Set Theory: The Third Millennium Edition, revised and expanded, 3rd, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg New York, 2002, ISBN: 978-3-540-44085-7.
- [6] Akihiro Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, Springer Monographs in Mathematics, Springer, 2009.
- [7] Saharon Shelah, Proper and Improper Forcing, ed. by S. Feferman et al., 2nd, vol. 5, Perspectives in Mathematical Logic, Berlin: Springer-Verlag, 1998, ISBN: 3-540-51700-6.
- [8] Saharon Shelah and Masahiro Shioya, Nonreflecting stationary sets in $\mathcal{P}_{\kappa}\lambda$, Advances in Mathematics 199.1 (2006), pp. 185–191, ISSN: 0001-8708, DOI: https://doi.org/10.1016/j.aim.2005.01.012, URL: http://www.sciencedirect.com/science/article/pii/S0001870805001015.
- [9] Masahiro Shioya, Stationary reflection and the club filter, Journal of Mathematical Society of Japan 59.4 (2007), pp. 1045–1065, DOI: 10.2969/jmsj/05941045.

References III

[10] Masahiro Shioya, The Minimal Normal μ -Complete Filter on $P_{\kappa}\lambda$, Proceedings of the American Mathematical Society 123.5 (1995), pp. 1565–1572, ISSN: 00029939, 10886826, URL: http://www.jstor.org/stable/2161149.

Thank you for your attention!

Appendix: Detailed Proof

A Proof of Indestructibility Lemma

- Since $\mathcal{A} \in V[G_{\kappa}]$, we can list $\mathcal{A} = \{ f(\alpha) \mid \alpha < \omega_1 \}$.
- $D_0 := \{ N_{\alpha}^{\kappa} \mid N_{\alpha}^{\kappa} \cap \omega_1 = \alpha, f[\alpha] = \mathcal{A} \cap N_{\alpha}^{\kappa} \}$ contains a club, hence $D_0 \in \mathcal{F}$ by normality. $\rightsquigarrow D := D_0 \cap \pi_{\kappa}(\tilde{S}_{\mathcal{A}}) \in \mathcal{F}.$
- $\star\,$ In view of Fact 4, it suffices to see $D\subseteq \bigtriangledown_{\!\!\alpha} f(\alpha).$
- So take $\alpha \in D$; we will show $\alpha \in \bigcup_{\gamma < \alpha} f(\gamma)$.
- Since $\alpha \in D_0$, we have $N_{\alpha}^{\kappa} \cap \alpha = \alpha$ and $f[\alpha] = \mathcal{A} \cap N_{\alpha}^{\kappa}$.
- On the other hand. $\alpha \in \pi_{\kappa}(\tilde{S}_{\mathcal{A}})$ implies we have $\alpha = N_{\alpha}^{\kappa} \cap \omega_1 \in \bigcup (\mathcal{A} \cap N_{\alpha}^{\kappa}).$

 $\rightsquigarrow \ \alpha \in \bigcup_{\gamma < \alpha} f(\gamma)$ as desired!

Back

Use of Extension Property: Positive-Set Coherency

Proof. Fix \dot{A} with \Vdash_{ν} " $\dot{A} \in \mathcal{F}_{\nu}^+$ ". In view of Lemma 9, it means

$$\Vdash_{\nu} ``\left\{ \left. N \prec \mathcal{H}_{\theta} \right| N \cap \nu \in \Delta_{\nu}, N \cap \omega_{1} \in \dot{A} \right\} : \text{ stationary}".$$

We fix any $p \in \mathbb{P}_{\mu}$ and find $r \leq p$ with $r \Vdash_{\mu} \dot{A} \in \mathcal{F}_{\mu}^+$. Again, by Lemma 9, it suffices to find $N^* \prec \mathcal{H}_{\theta}^V$ and (N^*, \mathbb{P}_{μ}) -generic $r \leq p$ such that:

$$r \Vdash N^* \cap \mu \in \Delta_{\mu} \wedge N^* \cap \omega_1 \in \dot{A} \wedge \Delta_{\mu}, A, \mu \in N^*$$

Recall that N^* -genericity assures that N^* and $N^*[G_\kappa]$ has exactly the same ordinals. By stationarity, we can pick $\dot{N} \in V^{\mathbb{P}_{\mu}}$ such that:

$$p \Vdash_{\mu} ``\dot{N}[G_{\kappa}] \prec \mathcal{H}_{\theta}[G_{\kappa}], \dot{N}[G_{\nu}] \cap \omega_{1} \in \dot{A}, \dot{N}[G_{\nu}] \cap \nu \in \Delta_{\nu},$$
$$p, \nu, \mu, \dot{A}, \dot{\Delta}_{\nu}, \check{\Delta}_{\mu} \in N[G_{\nu}]".$$

Since \mathbb{P}_{μ} is countably closed, we can pick $q_0 \leq p$ and $N \prec \mathcal{H}_{\theta}^V$ such that $q_0 \Vdash \dot{N} = \check{N}$. Let $q := q_0 \upharpoonright \nu$. Then q is (N, \mathbb{P}_{ν}) -generic. Furthermore, since the statement $\check{N} \cap \nu \in \dot{\Delta}_{\nu}$ is determined at ν -stage, we have $q \Vdash `\check{N} \cap \nu \in \dot{\Delta}_{\nu}$. By definition we also have $q \parallel p$. Then, EP gives us $N^* \succ N$ and (N^*, \mathbb{P}_{μ}) -generic $r \leq p, q$ with $r \Vdash `\dot{A}, \dot{\Delta}_{\mu}, \mu \in N^*[G_{\mu}] \land N^* \cap \mu \in \dot{\Delta}_{\mu} \land N^* \cap \omega_1 = N \cap \omega_1 \in \dot{A}'',$

which is what we wanted.

Proof. It suffices to show the case $\theta = \kappa^+$. First we fix an 2^{κ} -s.c. embedding $j: V \xrightarrow{\prec} M$ with $\operatorname{cp}(j) = \kappa$. Since ${}^{2^{\kappa}}M \subseteq M$, we have $\mathcal{H}_{\kappa^+}^V = \mathcal{H}_{\kappa^+}^M$; in particular, we have $\mathcal{H}_{\kappa^+}^{V[G_{\kappa}]} = \mathcal{H}_{\kappa^+}^{M[G_{\kappa}]}$ for any (V, \mathbb{P}_{κ}) -generic G_{κ} . Further we have $j \upharpoonright \mathcal{H}_{\kappa^+} \in M$. So let, in $M^{\mathbb{P}_{j(\kappa)}}$, $N_{\alpha}^* := j(N_{\alpha}^{\kappa}) \prec \mathcal{H}_{j(\kappa)^+}^{M[\dot{K}]}$ and $\tilde{H} := \bigcup_{\alpha} N_{\alpha}^*$. Fix any \dot{S} such that $\Vdash_{\kappa}^V ``\dot{S} \subseteq \left\{ N \prec \mathcal{H}_{\kappa}^+[\dot{G}] \mid N \cap \kappa \in \Delta_{\kappa} \right\}$ ". By elementarity, it suffices to show the following:

Claim

$$\Vdash_{j(\delta)}^{M} \dot{B} := \left\{ \alpha < \omega_1 \mid N_{\alpha}^* \in j(\dot{S}) \right\} \in \mathcal{F}_{\omega_1}(j(\Delta)_{j(\kappa)})^+.$$

So we will argue in M. Note that, again by closure, we have $\dot{S} \in M$. Hence, by elementarity, we have $\Vdash_{j(\kappa)}^{M} \dot{B} = \pi_{\kappa}(\dot{S})$, which means that \dot{B} is stationary in $M^{j(\kappa)}$ and we may assume that $\dot{B} \in M^{\kappa^+}$. With these and Lemma 9 in mind, the above reduces to the following:

Claim'

For any $p \in \mathbb{P}_{j(\kappa)}$, there is $N^* \prec \mathcal{H}^M_{j(\theta)}$ and $(N^*, \mathbb{P}_{j(\kappa)})$ -generic $r \leq p$ which forces $j(\kappa), j(\Delta)_{j(\kappa)} \in N^*[G_{j(\kappa)}]$, $N^* \cap j(\kappa) \in j(\Delta)_{j(\kappa)}$ and $N^* \cap \omega_1 \in \dot{B}$.

So fix any $p \in \mathbb{P}_{j(\delta)}$.

Proof of PRP: Taking generic r

Since \dot{B} is stationary, one can pick $\dot{N}\in M^{j(\kappa)}$ such that

$$p \Vdash \check{p}, \kappa^+, j(\kappa), \Delta_{\kappa^+}, \Delta_{j(\kappa)} \in \dot{N}[G_{j(\kappa)}] \prec \mathcal{H}_{j(\kappa)}[G_{j(\kappa)}], \dot{N} \cap \omega_1 \in \dot{B}.$$

Take $q_0 \leq p$ and $N \prec \mathcal{H}^M_{i(\kappa)}$ such that $q_0 \Vdash \dot{N} = \check{N}$ and let $q := q \upharpoonright \kappa^+$ and $\alpha := N \cap \omega_1$. We may assume that $N_{\alpha}^{\kappa} \cap \omega_1 = N^* \cap \omega_1 = \alpha$ and clearly q is $(N, \mathbb{P}_{\kappa^+})$ -generic. Then we have $q_0 \Vdash \alpha \in \dot{B}$, and hence $q \Vdash "N \cap \omega_1 \in \dot{B}"$. We also have $q_0 \Vdash N_{\alpha}^{\kappa} \cap j(\kappa) \in j(\Delta)_{j(\kappa)}$. But, since $N_{\alpha}^{\kappa} = N \cap H$ and $\tilde{H} \cap j(\kappa) = \tilde{H} \cap \kappa^{+I} = \kappa$, we have $N \cap \kappa^{+} \in j(\Delta)_{j(\kappa)}$. In particular, Monotonicity of $\vec{\Delta}$ implies that $N \cap \kappa^+ \in j(\Delta)_{\kappa^+}$. Then, by Extension Property, we can get $N^* \succ N$ and $(N^*, \mathbb{P}_{i(\kappa)})$ -generic $r \leq p, q$ such that $N^* \cap \omega_1 = \alpha$ and $r \Vdash "N^* \cap j(\kappa) \in j(\Delta)_{j(\kappa)} \land N^* \cap \omega_1 \in \dot{B}$ ", which was what we wanted.

Lemma 24

Suppose $\operatorname{cf} \omega_1 \leq \lambda < \kappa$, $\lambda^{<\omega_1} = \lambda$ and Δ is weakly stationary in $\mathcal{P}_{\omega_1}\kappa$. If $\operatorname{PRP}_{\omega_1}(\Delta,\lambda)$ holds, then, for any $S \subseteq \Delta$ weakly stationary in $\mathcal{P}_{\omega_1}\kappa$, there is $X \in [\kappa]^{\lambda^{<\omega_1}}$ such that $\lambda \subseteq X$ and $S \cap \mathcal{P}_{\omega_1}X$ remains weakly stationary in $\mathcal{P}_{\omega_1}X$.

Proof. Let $S \subseteq \mathcal{P}_{\omega_1} \kappa$ be stationary. Fix sufficiently large $\theta \gg \kappa$. Clearly, $S^{H_{\theta}} = \{ N \prec \mathcal{H}_{\theta} \mid N \cap \kappa \in S \}$ is stationary. By PRP $_{\omega_1}(\Delta, \lambda)$, there exists a continuous elementary directed system $\langle N_x \mid x \in \mathcal{P}_{\omega_1} \lambda \rangle$ such that $T := \{ x \in \mathcal{P}_{\omega_1} \lambda \mid N_x \cap \kappa \in S \}$ is \mathcal{F}_{Δ} -positive, and, in particular, stationary. Let $H := \bigcup_x N_x$ and $X := H \cap \lambda$. Then we have $|X| = \lambda^{<\omega_1}$ and clearly $\lambda \subseteq X$. We claim that this X suffice. Lifting T up to $\mathcal{P}_{\omega_1}X$, we have that $T^X := \{ z \in \mathcal{P}_{\omega_1}X \mid N_{z \cap \lambda} \cap \kappa \in S \}$ is stationary. It suffices to show that $C := \{ z \in \mathcal{P}_{\omega_1}X \mid N_{z \cap \lambda} \cap \kappa = z \}$ contains club, since it implies that $T^X \subseteq_{\mathcal{C}_{\omega_1,X}} S$, and hence $S \cap \mathcal{P}_{\omega_1}X$ is stationary as desired.

To see that, let $D := \{ N_x \cap X \mid x \in \mathcal{P}_{\omega_1}\lambda, N_x \cap \lambda = x \}$, which is club in $\mathcal{P}_{\omega_1}X$. We have $D \subseteq C$: if $z \in D$, then, $z = N_x \cap X$ for some $x \in \mathcal{P}_{\omega_1}\lambda$, and by definition of D we have $z \cap \lambda = x$. It follows that $z = N_x \cap \kappa = N_{z \cap \lambda} \cap \kappa$.