halg-algorithms-0.6.0.0: Algorithms related to Gröbner basis, part of halg computational algebra suite.
Safe HaskellNone
LanguageHaskell2010

Algebra.Field.RationalFunction

Synopsis

Documentation

data RationalFunction k Source #

Unary rational field over a field k.

With OverloadedLabels extension, you can use IsLabel instance to write variable as #x; for example 1 / (#x - 2) ^ n.

Instances

Instances details
(Field k, Eq k) => IsLabel "x" (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => RightModule Integer (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => RightModule Natural (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => LeftModule Integer (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => LeftModule Natural (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Eq (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Num (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Euclidean k, Division k, Ord k) => Ord (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(CoeffRing k, PrettyCoeff k) => Show (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => UFD (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => PID (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => GCDDomain (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => IntegralDomain (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Euclidean (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => ZeroProductSemiring (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => UnitNormalForm (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Ring (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Rig (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => DecidableZero (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

Methods

isZero :: RationalFunction k -> Bool #

(Eq k, Euclidean k, Division k) => DecidableUnits (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => DecidableAssociates (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Unital (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Division (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Commutative (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Semiring (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Multiplicative (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Monoidal (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Group (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Additive (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

(Eq k, Euclidean k, Division k) => Abelian (RationalFunction k) Source # 
Instance details

Defined in Algebra.Field.RationalFunction

diffRF :: (Eq k, Field k) => RationalFunction k -> RationalFunction k Source #

Formal differentiation

taylor :: (Eq k, Field k) => RationalFunction k -> [k] Source #

Formal Taylor expansion